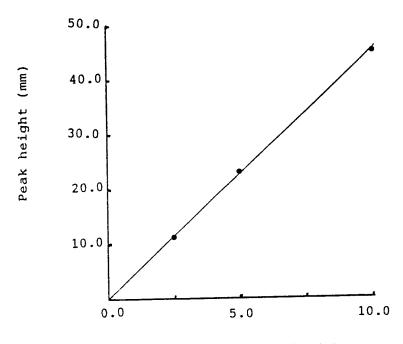
Correlation of Tetrachloroethylene in Blood and in Drinking Water: A Case of Well Water Pollution

Kazuhiro Kido, Takehiko Shiratori, Takao Watanabe, Haruo Nakatsuka, Mariko Ohashi, and Masayuki Ikeda


Department of Environmental Health, Tohoku University School of Medicine, Sendai 980, Japan

Tetrachloroethylene (to be abbreviated as TETRA), animal established carcinogen (National Cancer National Institute 1977: Toxicology Program 1986: Mennear et al. 1986), has been widely used for cleaning of cloth for many years (Browning 1965). Currently, this chemical together with trichloroethylene (TRI) appears to be the most prevailing pollutant of ground water (Zoeteman et al. 1980; US Council of Environmental Quality 1982: Environment Agency 1983; Trouwborst 1983) in various countries including Japan. While the biological monitoring exposure is popular in occupational health (for a review, see Monster and Zielhuis 1983), TETRA was seldomly analyzed in the subjects exposed through the general environment. In the present report, a case of water pollution with TETRA is described in which up to TETRA was detected the blood in of the inhabitants in area where well water was contaminated with TETRA.

MATERIALS AND METHODS

Inhabitants in a area downstream (in a flow of a brook possibly also that of ground water) of a cleaning plant complained that their well water had "chemical" smell especially when it was boiled. Some (about 140 people) families appeared to be involved. among which treated water (city water) had been supplied by the local authority to 23 homes, not to the remaining 13. Interview disclosed that the inhabitants including those who had treated water supply depended primarily on well water for daily life preferred well water even for drinking disliked the treated water because of they its "chlorine" smell due to chlorination. The treated

Send reprint requests to M Ikeda at the above address.

TETRA in blood (ug/L)

Figure 1. A calibration line for head-space GC determination of TETRA in blood.

water was obtained by rapid filtration of river followed by chlorination, and no TETRA nor TRI had ever been detected in the treated water. Venous blood samples were collected from 74 members of 23 families the wells together with water samples from (all of 34 homes including those m-deep) families. From each blood samples a few mL portion in a plastic container with no air taken space, frozen and analyzed immediately kept thawing, and the rest was used for clinical laboratory tests. Well water samples were taken in containers with no air space, kept at 4 °C in dark and analyzed within 24 hrs after sampling.

An ECD(⁶³Ni)-gaschromatograph (GC: Hitachi Model 163) employed for the detection of TETRA both in blood and in water. The GC was equipped with a glass column (3 m in length and 3 mm in inner diameter) packed with Silicon DC 550 on Chromosorb WAW DMCS The injection port and the oven were heated at 90°C, respectively. Nitrogen and carrier, was allowed to flow at a rate of 50 mL/min.

TETRA in blood was determined by head-space GC

(Ministry of International Trade and Industries 1987). In practice, 2 mL of blood was taken in a 10-mL vial [with a silicone septum (AK 12024: Gasukuro Kogyo Co., Tokyo, Japan)]. The vial was sealed immediately after the addition of 0.5 g NaCl and 5 µL methanol, at 25°C (range; ±0.1 °C) in a water bath for 1 hr. aliquot, 0.25 mL, of the air phase was injected to the GC by means of an air-tight syringe. The calibration line (Fig. 1) was prepared by the addition of $5~\mu L$ each of TETRA in methanol (1 to 100 µg/mL methanol) to blood sample obtained from non-exposed control The lines passed the origin and the CV of subjects. slopes was ca. 10% when the calibration setting was repeated 6 times. The lowest limit was 0.5 blood when determination ug TETRA/L peak/noise ratio of 2 was taken. Analysis of TETRA was conducted in accordance with standardized method (Ministry of International 1987). Industries Namely, TETRA in 40 mL was extracted with 10 mL n-hexane sample water vigorous shaking for 15 min, and 2-5 μL of the organic layer (diluted with n-hexane as necessary) was applied the ECD-GC analysis. TRI was also measured when the level was above the detection limit. The limit of determination for TETRA and TRI in water were both 0.2 μ g/L.

Serum biochemistry [assay for GOT (ASAT; EC 2.6.1.1), GPT (ALAT; EC 2.6.1.2), gamma-GTP (EC 2.3.2.1), ZTT, TTT and serum protein] and hematology (hemoglobin and hematocrit) were conducted by conventional methods.

RESULTS AND DISCUSSION

water samples were collected from wells households for TETRA determination and the results were plotted on a map, a marked clustering of high TETRA values was observed along a flow of a 2), whereas TETRA levels were much lower in the samples collected at the sites away from the brook. Upstream of the sites with high TETRA values was factory suspected of the water pollution source. The factory used TETRA for dry-cleaning and TETRA ater use was stored in a semi-underground tank. At the points further upstream, TETRA was not detected in well water samples as expected. TRI was also found in most well water samples in which TETRA was detected. TRI/TETRA ratios were calculated for each sample correlation of the ratio (Y%) with the distance (X m) from the suspected point source was estimated as the fit (by least square method) for an equation $\log Y = \alpha \times \log X + \beta$, $\alpha = 1.167$ (r=0.507; p=0.05) obtained as the solution. The equation indicates that

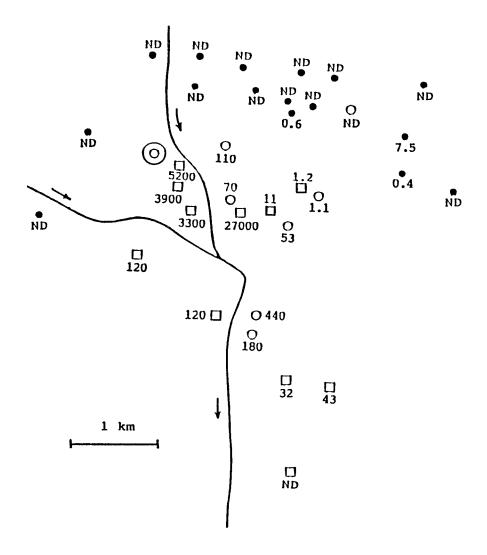


Figure 2. TETRA levels in wells. The double circle indicates the location of probable point source of pollution. Other symbols show the locations of wells surveyed, and the numbers are TETRA levels (μ g/L; ND <0.2 μ g/L). Open squares and circles are for the wells of the families who offered blood samples (squares for those who had no treated water supply, and circles for those who used both well water and treated water). Solid circles show the cases in which only well water (and no blood) samples were available. The curve means a tiny brook flowing through the study region.

Table 1. TETRA in blood and in well water by family

Family number (No.a/)	Well water	A (μg/L) in Blood	Use of Supply well of water treated for D/Cb/ water
1 (5)	27000	5.1, 4.6, 3.8, 1.5, 1.0	yes no
2 (2)	5200	2.2, 0.8	yes no
3 (1)	3900	4.3	yes no
4 (2)	3300	0.9, NDC/	yes no
5 (5)	440	ND, ND, ND, ND, ND	no yes
6 (5)	180	ND, ND, ND, ND, ND	yes yes
7 (6)	120	0.7, ND, ND, ND, ND, NI) yes no
8 (5)	120	ND, ND, ND, ND, ND	yes no
9 (4)	110	ND, ND, ND, ND	yes yes
10 (1)	70	ND	yes yes
11 (3)	53	ND, ND, ND	yes yes
12 (5)	43	ND, ND, ND, ND, ND	yes no
13 (5)	32	ND, ND, ND, ND, ND	yes no
14 (4)	11	ND, ND, ND, ND	yes no
15 (2)	1.2	ND, ND	yes no
16 (1)	1.1	ND	yes yes
17 (1)	ND	ND	yes no
18 (4)	ND	ND, ND, ND, ND	yes yes

In addition, TETRA levels in blood were ND in 13 subjects of 5 families who had no well.

the TRI/TETRA ratio will increase as almost as a linear function of the distance from the source.

Among the 74 individuals (of 31 families) who offered blood samples, 5 families with 13 subjects had no well and possibilities of TETRA exposure via well could be ruled out; no TETRA was detected in their expected. Results with the remaining as families (with 61 subjects) are summarized in Table 1 together with information on use of well water/treated for drinking and cooking. It was evident from the table that TETRA was detected in the blood in case TETRA in well water was above a certain level, 120 µg/L, whereas TETRA was not detectable in blood either when TETRA in water was very low (e.q., µg/L) or well water was not used for drinking For example, TETRA in blood was below cooking. limit in the case of Family No. 5 despite detection TETRA was present at 440 µg/L in their well water, presumably because they depended only on

a/ Number of examinees.

b/ For drinking and cooking.

 $[\]frac{C}{L}$ / Not detectable (<0.2 µg/L for well water and <0.5 µg/L for blood).

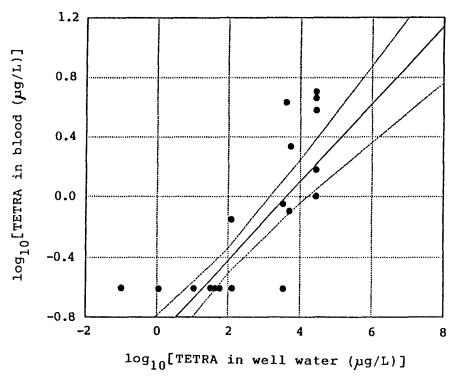


Figure 3. The correlation between TETRA in well water and TETRA in blood of the family who used the well water for drinking and cooking.

The dots indicate 38 cases of the examinees who had no treated water supply, and offered both blood and well water samples (i.e., members of Family Nos. 1-4, 7, 8, 12-15, and 17 in Table 1). The line in the center is a calculated regression line of Y=AX+B, where Y and X are $\log_{10}[\text{TETRA }(\mu\text{g/L})$ in well water] and $\log_{10}[\text{TETRA }(\mu\text{g/L})$ in blood]. The dotted curves on both sides of the line are 95% confidence range of the regression line. TETRA levels in ND cases are taken as if they were half the detection limit, i.e., 0.1 $\mu\text{g/L}$ and 0.25 $\mu\text{g/L}$ for TETRA in well water and blood, respectively, in calculation for practical reasons.

treated water. Reversely, one member in Family No. 7 had 0.7 μ g/L TETRA in blood probably the family used well water for life although TETRA in well water (120 μ g/L) was lower than that for Family No. 5.

Trials were made to examine if there existed any correlation between TETRA in well water and TETRA in blood of the family who used the well water, and to figure out critical TETRA concentration in well water for detectable level of TETRA in blood in case the

correlation was present. For this purpose, families were selected so that TETRA was detectable in blood of at least one family member, and regression analysis was conducted between TETRA in well water and TETRA in blood, taking ND in well water or in blood as if it were 0.1 μ g/L for the former or 0.25 μ g/L for the latter (or half the detection limit) for practical reasons. The results are depicted in Fig. 3 in which the calculated regression line is drawn in a scatter diagram of TETRA in blood against TETRA in well water. A regression of Y = 0.269X + 0.948 was figured out in which X is log_{10} [TETRA in well water (μ g/L)] and Y is log_{10} [TETRA in blood (μ g/L)]. When TETRA in blood is assumed to be at the detection limit of 0.5 ug/L (or half the level, i.e., 0.25 μ g/L), corresponding TETRA in well water is 287 μ g/L (or 20 μ g/L).

There was no case of abnormal hematology among the subjects who offered the blood. As for the liver functions, three men had elevated gamma-GTP levels (78, 163 and 188 units/mL) with normal GOT and GPT, and one woman had slightly elevated GOT (46 Karmen units) and GPT (65 Karmen units). TETRA levels in blood was below the detection limit in all of them.

While TETRA contamination of ground water with the risk of drinking pollution has been discussed 1970's (e.g., Giger and Molnar-Kubica 1978; no trial appears to be made to detect pollutant in human biological specimens. present study, TETRA was successfully detected in the blood of the inhabitants who used to use TETRAcontaminated well water for drinking and cooking (Table 1). There was a linear relation between TETRA levels in well water and TETRA in blood (Fig. 3). critical TETRA concentration in well water for detection of TETRA in blood (0.5 µg/L) was calculated to be 200 μ g/L (Fig. 3). It should be noted however the regression line obtained is subject to vary depending on the evaluation of ND values; the current calculation was based on the assumption of 0.25 µg/L the place of ND, but the slope of the regression line will be less steep and thus the critical concentration could be smaller when smaller values (e.g., 0.1 μ g/L) are assumed for ND values in blood. When the families were selected so that at least one family member had measurable level of TETRA Families Nos. 1-4 and 7 in Table 1), the regression analysis made only with these subjects gave a critical concentration of 85 µg/L well water.

For practical solution of the case, treated water was supplied to all homes in the region and inhabitants were advised not to use well water for drinking and other exposure-related purposes. The storage tank for used TETRA was repaired to prevent any leakage.

TETRA exposure-related health effect could No demonstrated in the present study. An occupational limit of 50 ppm (269 mg/m 3) is generally for TETRA in many countries (e.g., accepted Association 1988; of Industrial Health American Conference of Governmental Industrial Hygienists 1988-1989). With assumptions that the respiratory volume $0.9 \, \text{m}^3/\text{hr}$ and lung absorption rate for TETRA 50% (Ohtsuki et al. 1983), 8 hr exposure to TETRA 50 ppm will result in the absorption of 1206 mg TETRA. The highest TETRA level in the well water observed in present study was 27 mg/L (Table 1). intake of 2 L of such water will be associated with ingestion of 54 mg TETRA. The amount absorbed would be even less because 100% absorption of in the gastro-intestinal tract is unlikely. Such a large difference in the amount to be absorbed may explain apparent lack of health effects The additional exposure the present observation. of inhabitants to TETRA might have occured either through inhalation or even via skin penetration the contaminated well water was heated and employed for bathing. There was however no measure to evaluate the intensity of such exposures.

Another point of interest is the co-presence of TRI in TETRA-contaminated well water. Several possibilities can be proposed. TETRA used in the suspected facility may originally contain TRI as an impurity, or TRI may be derived from other sources. In this relation, should be noted that there was no other industrial plant in the region. While no sample was available to examine the first hypothesis, the facts that TRI co-present in all well water samples and that TRI/TETRA ratio was similar in two well water samples highest TETRA levels might be in the favor of this possibility. The observation that the TRI/TETRA ratio increased as a linear function of the distance suspected pollution source however suggests ratio in well water increases as the contaminated In fact, transformation of water flows through soil. TETRA to TRI under reductive conditions has recently confirmed at an experimental level (Bouwer and McCarty 1983; Vogel and McCarty 1985). It is also TETRA may be selectively adsorbed possible that The mechanism of TRI co-presence apparently needs further study.

REFERENCES

- American Conference of Governmental Industrial Hygienists (1988-1989) Threshold limit values and biological exposure indices for 1988-1989, ACGIH, Cincinnati, Ohio
- Bouwer EJ and McCarty PL (1983) Transformation of 1and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. All Environ Microbiol 45:1286-1294
- Browning E (1965) Toxicity and metabolism of industrial solvents. Elsevier, Amsterdam, pp.213-219
- Environment Agency, the Government of Japan (1983) Note on ground water pollution. Water Quality Bureau, Environment Agency, Tokyo (in Japanese)
- Japan Association of Industrial Health (1988) Recommended occupational exposure limits for 1988. Jpn J Ind Health 30:331-331 (in Japanese)
- Mennear J, Maronpot R, Boorman G, Eustis S, Huff J, Haseman J, McConnell E, Ragan H, Miller R (1986) Toxicologic and carcinogenic effects of inhaled tetrachloroethylene in rats and mice. In: Chambers PL, Gehring P, Sakai F (eds) New concepts and developments in toxicology. Elsevier, Amsterdam, pp.201-210
- Ministry of International Trade and Industries, the Government of Japan (1987) JIS K 0125-1987 Testing method for low molecular weight halogenated hydrocarbons in industrial water and waste water. Japan Standards Association, Tokyo (in Japanese) Monster AC, Zielhuis RL (1983) Chlorinated hydrocarbon
- Monster AC, Zielhuis RL (1983) Chlorinated hydrocarbon solvents. 9. Tetrachloroethene (tetrachloroethylene, perchloroethylene, perc.). In: Alessio L, Berlin A, Roi R, Boni M (eds) Human biological monitoring of industrial chemicals series. Commission of the European Communities, Brussels, pp.84-92
- National Cancer Institute (1977) Bioassay of Tetrachloroethylene for Possible Carcinogenicity. NCI-CG Technical Report Series No. 13, U.S. Government Printing Office, Washington DC.
- National Toxicology Program (1986) Toxicology and Carcinogenesis Studies of Tetrachloroethylene (Perchloroethylene) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). NTP Technical Report Series No. 311, U.S. Government Printing Office, Washington DC.
- Ohtsuki T, Sato K, Koizumi A, Kumai M, Ikeda M (1983) Limited capacity of humans to metabolize tetrachloroethylene. Int Arch Occup Environ Health 51:381-390
- Trouwborst T (1981) Groundwater pollution by volatile halogenated hydrocarbons, source of pollution and methods to estimate their reference. Sci Total Environm 21:41-46

- Vogel TM and McCarty PL (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol 49:1080-1083
- US Council on Environmental Quality (1981) Contamination of Ground Water with Toxic Chemicals. EXecutive Office of the President Council on Environmental Quality, Washington, DC
- Zoeteman BCJ, Harmsen K, Linders JBHJ, Morra CFH, Slooff W (1980) Persistent organic pollutants in river water and ground water of the Netherlands. Chemosphere 9:231-249

Received December 5, 1988; accepted February 2, 1989.